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Abstract

Occupational exposure assessment is almost exclusively accomplished with personal sampling. 

However, personal sampling can be burdensome and suffers from low sample sizes, resulting in 

inadequately characterized workplace exposures. Sensor networks offer the opportunity to 

measure occupational hazards with a high degree of spatiotemporal resolution. Here, we 

demonstrate an approach to estimate personal exposure to respirable particulate matter (PM), 

carbon monoxide (CO), ozone (O3), and noise using hazard data from a sensor network. We 

simulated stationary and mobile employees that work at the study site, a heavy-vehicle 

manufacturing facility. Network-derived exposure estimates compared favorably to measurements 

taken with a suite of personal direct-reading instruments (DRIs) deployed to mimic personal 

sampling but varied by hazard and type of employee. The root mean square error (RMSE) between 

network-derived exposure estimates and personal DRI measurements for mobile employees was 

0.15 mg/m3, 1 ppm, 82 ppb, and 3 dBA for PM, CO, O3, and noise, respectively. Pearson 

correlation between network-derived exposure estimates and DRI measurements ranged from 0.39 

(noise for mobile employees) to 0.75 (noise for stationary employees). Despite the error observed 
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estimating personal exposure to occupational hazards it holds promise as an additional tool to be 

used with traditional personal sampling due to the ability to frequently and easily collect exposure 

information on many employees.
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INTRODUCTION

Occupational environments, especially heavy industry, often have complex hazardous 

exposures resulting from manufacturing processes including cutting metal stock, welding, 

grinding, machining, and abrasive blasting. Exposures resulting from these processes 

include particulate matter (PM); gases such carbon monoxide (CO), oxides of nitrogen 

(NOx), and ozone (O3); metals including lead, nickel, zinc, manganese, iron oxides, copper, 

cadmium and chromium; physical hazards such as noise, heat, electrical and vibration; and 

radiological including visible and ultraviolet frequencies of light.1 To assess compliance 

with occupational exposure limits to workplace hazards, employers have historically 

performed exposure monitoring, typically by personal sampling on individuals suspected to 

have high exposure.2 However, personal sampling can have drawbacks such as high expense 

and burden to employees and generally suffers from a low number of samples taken.3 In 

most cases, fewer than six samples at an industrial facility are used to judge if employees 

may be over-exposed or workplaces are in compliance with regulatory permissible exposure 

limits,4 and many rely on just one measurement.5 This situation results in inadequately 

characterized workplace exposures and occupational risks that may be higher than 

compliance testing indicates.3

In light of this problem, the National Institute for Occupational Safety and Health (NIOSH) 

has called for “comprehensive exposure assessment,” where risks from all hazards for all 

days and all workers are considered.6 Furthermore, cost-efficient occupational exposure 

assessment, where both economics and statistical efficiency (e.g. number of subjects, sample 

size and measurement error) are considered, is also needed.7 Low-cost sensors could 

potentially fill this need and have recently attracted the attention of environmental health 

scientists seeking to measure air pollution with a high degree of temporal and spatial 

resolution, for example compared to commonly used daily averages.8–12 Advances in open 

software toolkits and microprocessor platforms have facilitated the development of 

customized wireless sensor networks, and there is a growing number of examples in the 

literature.13–22 Data from sensor networks may be used to create hazard maps,23–31 which 

visually communicate risk,32 identify hazard sources,24, 27 characterize the distribution of 

hazards in a facility or the environment,26, 27, 31 and inform hazard control strategies.24

We have previously developed a multi-hazard sensor network constructed with low-cost 

sensors for PM, CO, oxidizing gases (O3+ NO2) and noise.33 An industrial hygienist 

identified hazards at the study site, a heavy-vehicle manufacturing facility, and those of 

greatest occupational health importance were chosen for inclusion our sensor network. PM 
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has well-characterized associations with cardiopulmonary and respiratory diseases, lung 

cancer, inflammation, oxidative stress, pulmonary infection, and lung function.34–37 The 

health effects of occupationally relevant CO concentrations include headache, dizziness, 

weakness, nausea and confusion.38 The inhalation of O3 causes inflammation, reduced lung 

function, DNA damage and increased symptoms and development of asthma.39–42 

Occupational noise exposure induces hearing impairment, hypertension and annoyance.43 

Additionally, there is limited evidence that noise in the workplace is associated with 

biochemical and immune effects, and impacts absentee rate and performance.43

In previous work, we have described the long-term deployment of our multi-hazard sensor 

network capable of mapping PM, CO, oxidizing gases and noise at the study site with a high 

degree of spatial and temporal resolution.44 In the current study we demonstrate that hazard 

mapping data from a multi-hazard sensor network, when combined with an individual’s 

location information, can be used to quantitatively estimate personal exposure to multiple 

occupational hazards simultaneously. We compare the network-derived exposure estimates 

to personal measurements collected from high-quality, personal direct-reading instruments 

that are commonly used in industrial hygiene practice.

MATERIALS AND METHODS

Sensor Network

We designed and constructed multi-hazard monitors, the sensors for which are summarized 

in Table S1. Each monitor, or “node” of the sensor network was equipped with sensors to 

measure PM (GP2Y1010AU0F, Sharp Electronics, Osaka, Japan); oxidizing gases (OX-

B431, Alpha sense Ltd., Essex UK; responsive to both O3 and NO2); CO (CO-B4, Alpha 

sense Ltd., Essex UK); sound pressure level (SPL)45; and temperature and relative humidity 

(AM2302, Ada fruit, New York, NY).33 The 40-node network was installed for 

approximately eight months within 74 900 m2 of a +185 800 m2 manufacturing facility that 

produces heavy vehicles for construction and forestry. The nodes of the network were 

deployed in a spatially optimized pattern to capture maximum spatial variability,46 and 

measurements from each monitor were transmitted wirelessly to a central database 

approximately every five minutes, permitting the hazard variability to be characterized with 

a high degree of spatial and temporal resolution.

We applied calibration curves developed in the laboratory for the CO and oxidizing gas 

sensors from a sample of three sensors of each type.47 These calibration curves were then 

applied to all sensors of that type in the monitor network for the duration of the sensor 

network deployment. The noise sensor used in the network was custom-made for this 

project.45 Briefly, each of the sensors were calibrated over a range of 65 to 95 dB with an 

acceptance criterion of ±2 dB with respect to a high quality direct-reading instrument (XL2, 

NTi Audio AG, Liechtenstein).

For PM, a field-derived slope was applied to each monitor based on values obtained at a 

calibration site with a direct-reading instrument (pDR-1000, Thermo Scientific, Franklin, 

MA).44 Because neither the pDR-1000 nor the PM sensors are size selective, the average of 

five respirable fraction filter samples taken over the course of the sensor network 
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deployment were used to gravimetrically correct the photometric PM concentrations (both 

the pDR-1000 and PM sensors). We took an additional step to correct PM sensor drift over 

the eight-month deployment by deriving sensor-specific weekly field calibration intercepts 

for each sensor. We did this by setting the average millivolt (mV) value of each sensor 

between 00:00 and 02:00 every Sunday night when PM concentrations were lowest, equal to 

the sensor LOD (0.026 mg/m3).44 The PM sensors in our network are affected by relative 

humidity (RH), but the impact on performance up to 67% RH is small,48 and since RH in 

this study was typically well below that, we made no RH correction (%RH mean ± standard 

deviation: 26 ± 10%). The effect of temperature on the PM sensor was negligible.48

For each of the sensor types in the network, we imputed all sensor measurements that were 

below the sensor limit of detection (LOD) with a value of the LOD divided by the square 

root of two (LODs: PM49 = 0.026 mg/m3; CO = 10 ppb; OX-B43150 = 4 ppb; noise45 = 65 

dBA). We have previously reported on the spatial and temporal variability of hazards, sensor 

precision, and measurement accuracy in the facility.44

Worker Simulation and Personal DRIs

On five occasions in August 2017, December 2017, and March 2018 we simulated two types 

of workers. The first type of worker was one that was highly mobile and traveled throughout 

the facility at a walking or slow biking/driving pace, such as supervisors, mechanics, 

employees that move small parts between workstations, and maintenance workers. For the 

first type of simulated worker, personal DRIs were worn by study staff, as a worker would 

for traditional personal sampling. Hereafter we refer to this simulated employee type as the 

“mobile” routine. For the mobile sampling routines, study staff kept a detailed log of their 

position as they moved throughout the facility according to an established coordinate 

system, marked by regularly spaced structural I-beams. The second type of worker was one 

that remained in a relatively small geographic space (within an area ≤ 12 × 18 m) to perform 

their work duties, such as a welder or machine operator. For this type of simulated worker, 

personal DRIs were deployed at an employee workstation for the duration of the simulated 

work shift and were not moved. Hereafter we refer to this simulated employee type as the 

“stationary” routine. We simulated a total of 22 work shifts (5 mobile and 17 stationary) 

during times of typical production (weekdays, 6:00–16:00). The personal DRIs were as 

follows: respirable PM, personal Data RAM 1500 configured for respirable dust sampling 

(‘pDR-1500,’ Thermo Scientific, Franklin, MA); CO, Easy Log CO-300 (Lascar Electronics 

Ltd., Erie, PA); O3, Personal Ozone Monitor (‘POM,’ 2BTechnologies, Boulder, CO); and 

noise, Spark 703+ (Larson-Davis Inc., Depew, NY). The personal DRIs used in this study 

for each hazard are shown in Table S1 alongside the low-cost sensors in the sensor network. 

These DRIs were chosen for personal measurements because they were representative of 

typical instruments commonly used for occupational exposure assessment by industrial 

hygienists and health and safety professionals.

Network-Derived Exposure Estimates

A schematic representation of our method for computing sensor network-derived exposure 

estimates is depicted in Figure 1, where two pieces of information are integrated: 1) the 

location of the simulated worker and 2) the hazard intensity at the position of interest. The 

Zuidema et al. Page 4

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2019 December 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



blue line indicates the route traveled by a simulated employee and the blue “X” indicates the 

location of the employee at a given time (t0, t1… ti). Hazard intensity is represented by 

hazard maps, and for each time of interest, ti, we estimated the hazard intensity, at the 

location of interest, (x,y). We used an inverse distance weighting (IDW) scheme to 

interpolate hazard intensity at unmeasured locations, which are displayed as a hazard maps 

for each five- minute period. Interpolating hazard intensity with IDW is physically plausible 

and computationally practical. We chose inverse distance squared weighting because it is 

supported by previous studies.32 Location and time information for the mobile sampling 

routine was recorded at every movement of study staff as they traveled throughout the 

facility, generally following a pattern of walking for one to two minutes (covering 

approximately 24–41 m), remaining stationary for five to fifteen minutes and walking again 

to the next location. Location for the stationary routine was taken as the coordinate where 

the suite of personal DRIs was deployed and did not change for the duration of the sampling 

period. Because the sensor network recorded hazard measurements every five minutes, we 

constructed hazard estimates at five-minute intervals also (e.g. t0 = 7:00, t1 = 7:05… ti = 

7:00 + 0:05∙i). Data analysis was performed with MATLAB R2017a (Natick, MA), with 

exception of descriptive noise calculations which were carried out in R 3.5.2 (Vienna, 

Austria) with the ‘see wave’ package.51

Data Analysis & Comparing Network-Derived Estimates and Personal DRI Measurements

For each routine we paired five-minute network-derived exposure estimates with five-minute 

personal DRI measurements and performed all analysis on paired five-minute data. For each 

simulated work shift we plotted a time series of the network-derived exposure estimates with 

the personal DRI measurements time series to qualitatively assess their overall agreement 

and correlation. We created “Bland-Altman” plots52 displaying the difference versus the 

mean of network-derived exposure estimates and measurements taken with personal DRIs to 

compare their agreement. These plots show the mean difference between the network-

derived exposure estimates and the personal DRI measurements and the limits of agreement 

(the mean difference ± 2σ). For differences that are normally distributed, 95% of the data 

will fall within the limits of agreement.

We pooled the five-minute pairs of network-derived exposure estimates and personal DRI 

measurements by simulated employee type (mobile or stationary) and by the month 

collected (August 2017, December 2017, March 2018, and August, December and March 

combined) for the following summary statistics: number of paired network-derived exposure 

estimates and personal DRI measurements, root mean squared error (RMSE), Pearson 

correlation, and relative agreement computations. We performed a regression-based 

comparison between network- derived exposure estimates and personal DRI measurements 

and calculated the RMSE and Pearson correlation coefficient. We tabulated a relative 

measure of agreement between network- derived estimates and personal DRI measurements 

by calculating the fraction of network-derived exposure estimates that were within (±) 10, 

25, 50 and 100% of the personal DRI measurements.
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RESULTS

Examples of time series for the August 2017 sampling period comparing network-derived 

mobile exposure estimates to personal DRI measurements are shown in Figure 2. The results 

of all personal DRI measurements and network-derived exposure estimates are summarized 

in Table 1 (mobile routine) and Table S2 (stationary routine). We collected data for one 

mobile and three stationary routines on one day in August 2017, two mobile and six 

stationary routines over two days in December 2017, and two mobile eight stationary 

routines over two days in March 2018. The number of 5-min pairs of network-derived 

exposure estimates and personal DRI measurements, N, ranged between 55 (all hazards, 

August 2017) and 169 (CO, March 2018). The number of five-minute pairs differed between 

hazards and time periods due to instrument allocation, run times and equipment failures. For 

example, in December 2017 for two mobile routines of approximately six hours each we 

collected a total of 156 pairs of five-minute network-derived exposure estimates and 

personal DRI measurements for both CO and noise. In comparison, we collected 153 pairs 

for PM due to a difference in run-time and only 91 pairs for O3, due to personal DRI failure.

The geometric mean (GM) and arithmetic means (AM) of PM, CO, O3 and noise measured 

by the personal DRIs varied between each of the sampling periods (August 2017 vs. 

December 2017 vs. March 2018), are shown in Table 1 (mobile routine) and Table S2 

(stationary routine). Mean hazard intensities generally reflected manufacturing activity in 

the facility, specifically, production in the facility during the December 2017 period was low 

due to the upcoming holiday shutdown, and comparatively higher for the March 2018 

period. For example, the lowest PM concentrations were observed for both mobile and 

stationary personal DRI measurements in December 2017 (GM PM concentrations: mobile 

= 0.30 mg/m3; stationary = 0.20 mg/m3) and were highest in March 2018 (GM PM 

concentrations: mobile = 0.48 mg/m3; stationary = 0.58 mg/m3). Other hazards displayed 

similar patterns but differences between sampling periods were not as notable as those 

observed for PM. None of the 5-min personal DRI measurements were below the 

instrument’s LOD for PM, and noise. For CO 2%, and for O3, 0.3% of DRI measurements 

were below the instrument’s LOD.

Comparisons of mobile routine personal DRI measurements and network-derived exposure 

estimates are shown in Table 1. In the mobile routine for the combined time period the 

RMSEs between network-derived estimates and DRI measurements were 0.15 mg/m3, 1 

ppm, 27 ppb, and 3 dBA for PM, CO, O3 and noise, respectively. For PM, CO, and noise 

there was little variation in the RMSE between August 2017, December 2017 and March 

2018. We observed greater variability in the RMSE for O3, which increased over time, from 

11 ppb in August 2017 to 31 ppb in March 2018 – likely related to the generally higher O3 

concentrations observed in March 2018 which were associated with larger differences 

between network-derived exposure estimates and personal DRI measurements. The 

correlation observed between the network- derived exposure estimates and their respective 

personal DRIs for each hazard also varied for the mobile routine. The combined Pearson 

correlation was highest for CO (r = 0.66), whereas the lowest was for noise (r = 0.39). In the 

mobile routine, as with the stationary routine, the fraction of network-derived exposure 

estimates within a given percentage of the personal DRI measurements was highest for 
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noise. For example, 0.96 of the combined noise estimates were within 10% of the personal 

DRI, compared to 0.24 for CO, 0.16 for PM and 0.07 for O3. Unfortunately, due to 

equipment failure in the March 2018 sampling period, no mobile noise personal DRI 

measurements were collected.

The Bland-Altman plots between network-derived exposure estimates and personal DRI 

measurements for the mobile routine are displayed in Figure 3. For PM, CO, O3, and noise 

the mean difference (limits of agreement) between the network-derived exposure estimates 

and the personal DRI measurements was equal to 0.00 (−0.39, 0.39) mg/m3, 0 (−4, 4) ppm, 

36 (−86, 158) ppb, and −3 (−9, 4) dBA, respectively. Differences between network-derived 

exposure estimates and personal DRI measurements were centered and evenly distributed 

near zero for PM and CO. For O3, at higher concentrations network-derived exposure 

estimates were increasingly negatively biased compared to personal DRI measurements. For 

noise, network-derived exposure estimates were generally lower than personal DRI 

measurements across the range observed.

Results for the stationary routine are presented in the Supporting Information (Table S2 and 

Figure S1). Generally, we observed similarity between the stationary and mobile routines 

with respect to the fraction of network-derived exposure estimates that fell within 10, 25, 50, 

and 100% of their corresponding personal DRI measurements. Of all hazards, the combined 

network- derived exposure estimates for noise had the largest fraction of estimates within the 

smallest percentage of the personal DRI measurements for both the mobile and stationary 

routines, where 0.99 – 1.00 of network-derived exposure estimates were within 10% of 

personal DRI measurements. In contrast, the hazard with the lowest fraction of network-

derived exposure estimates within 100% of personal DRI measurements was O3 for both 

routines, with only 0.45 for the combined stationary routine and 0.46 for the combined 

mobile routine.

The Pearson correlation between network-derived exposure estimates and personal DRI 

measurements varied by hazard, mobile versus stationary routine, and time period. Pearson 

correlation varied by hazard in the combined time periods of the mobile routines, it was 

highest for CO (r = 0.66) and lowest for noise (r = 0.39). Variability in correlation by routine 

was observed with noise, which had the biggest difference between the stationary routine (r 

= 0.75) and the mobile routine (0.39). An example of variability in correlation by sampling 

period, was observed for the mobile O3 routine – in December 2017, the Pearson correlation 

coefficient was equal to 0.05, compared to August 2017 where it was equal to 0.63. These 

differences in correlation between hazards and stationary versus mobile routine could have 

been affected by the by the variability of the hazards during each study period and routine. 

For example, according to the personal DRIs, the combined GM (geometric standard 

deviation, GSD) for CO was equal to 3 (4) ppm for the mobile routine and 5 (3) ppm for the 

stationary routine; while noise had a combined mean (standard deviation) equal to 83 (3) 

dBA for the mobile routine and 81 (10) dBA for the stationary routine. The larger the range 

of the hazard intensity and the more evenly data are distributed across that range may result 

in higher correlation coefficients observed for some hazards and periods of time than others.
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DISCUSSION

The success of our approach estimating personal exposure highly depends on the accuracy 

of the underlying hazard measurements of the sensor network. We have previously reported 

on the accuracy of this sensor network’s measurements by conducting experiments where 

each monitor was collocated with personal DRIs for one to five minutes.44 In that study over 

a range of hazard intensities, we observed the magnitudes of the median percent bias 

between network monitors and DRIs were equal to 27%, 11%, 45% and 1%, for PM, CO, 

O3 and noise respectively. In the same study, we observed higher levels of bias at lower 

hazard intensity – as high as 163% and 156% for PM and O3, respectively.

While the sources of measurement error from low-cost sensors differ, they can often be 

attributed to issues of sensitivity and specificity, in part due to sensor drift or degradation 

over time or responsiveness to non-target species. The PM sensor in our network showed 

evidence of decreasing sensitivity over time due to sensor loading or fouling.33 To reduce 

the effects of this drift on PM concentration estimates, we developed a procedure to correct 

the sensors weekly. In addition, the PM sensor in our network was not size selective, and 

there is evidence the sensors produce signals that vary with different PM composition or size 

distribution.53 Future work to improve the accuracy of estimates from the sensor network 

include accounting for aerosol size and composition effects on the sensor response and 

additional in-field calibrations of all sensors. Sensor technology is continuously improving 

and emerging sensors may measure PM concentrations with lower bias in the future.

Our network was constructed with an oxidative gas sensor to estimate O3 concentrations. In 

addition to O3 the sensor also responds to NO2 without discrimination,54, 55complicating the 

estimation of O3 in environments where NO2 is also present. Future work may be able to 

incorporate the manufacturer’s proposed method to pair an oxidizing gas sensor with and 

NO2-specific sensor to improve the accuracy of O3 measurements.54 Another source of error 

in this study is a ceiling observed on the CO sensor as configured in our network at 

approximately 12 ppm CO,47 resulting from the optimization of the CO sensor signal for 

concentrations anticipated at the study site.33 Because of this, the CO sensors are not 

sensitive to increasing CO concentrations above 12 ppm (totaling approximately 1% of all 

personal CO DRI measurements in this study). These errors in measurement translate to 

potential errors in estimating personal exposure. In contrast, the noise sensor, which was 

designed specifically for this sensor-network,45 did not show evidence of signal drift or 

degradation over time, and provided network- derived estimates agreeing most closely with 

the personal DRI measurements. However, despite the high agreement of the noise exposure 

estimates, in some sampling periods, the Pearson correlation coefficient was low (r = 0.23 

for the August 2017 mobile routine), demonstrating that correlation between a sensor and 

personal DRI may not be the best measure of sensor performance.

Our approach of estimating exposure requires utilizing hazard measurements from a low-

cost sensor network with high temporal and spatial resolution. Despite these challenging 

requirements, in this study we demonstrate it is feasible. The sensor network time resolution 

was five minutes; accordingly, we used a five-minute averaging time for the personal DRIs 

for comparison. Although a five-minute time resolution is high compared to shift-long time- 
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weighted averages (TWAs), our approach was incapable of finer time resolution and may fail 

to accurately capture the peaks of brief high exposure events, especially for hazards that 

decay quickly, for example, impact or impulse noise. Another example is O3, which is 

highly reactive and degrades quickly after it is produced. Limitations in temporal resolution 

especially affect the estimates for employees that move through the facility at a rapid pace 

potentially covering large distances in the facility in five minutes, such as materials handlers 

or forklift operators. We were unable to simulate these types of rapidly moving employees in 

this study. To estimate hazard intensity at locations where nodes of the sensor network were 

not located, we interpolated hazard intensity using an IDW scheme. While this spatial 

interpolation undoubtedly introduced some degree of error, the nodes of our network were 

spatially dense, with the maximum distance to the nearest monitor equal to 40 m (135 ft), 

helping to avoid errors related to spatial interpolation. Still, the potential to mischaracterize 

the spatial variability of hazards, especially those that decrease rapidly from their sources 

remains. We examined the impact of the distance to the nearest sensor network node and did 

not observe a relationship with respect to the bias of network-derived exposure estimates and 

personal DRI measurements.

In this study for simulated mobile employees, location information was supplied by study 

staff keeping a location diary during the sampling period. Although this was necessary to 

demonstrate our approach for generating network-derived exposure estimates, it is not 

practical for employees or employers, and automated indoor positioning systems would 

reduce the burden for this type of exposure assessment. While previous exposure assessment 

studies have used Global Positioning Systems (GPS) successfully,56, 57 they unfortunately 

generally perform poorly indoors due to interference from building roofs and a lack of “line-

of-sight” to the satellites.58 Therefore, for indoor/occupational settings, technologies 

specifically capable of indoor localization are necessary. These indoor positioning systems 

include radio frequency identification (RFID), wireless local area networks (WLAN), indoor 

GPS, and ultra-wide band radio frequency,59–61 and have been investigated in construction, 

manufacturing, warehouses, agriculture and healthcare settings.60, 62–66 Future work will 

focus on the use of indoor positioning systems such as these to provide location information 

for generating exposure estimates derived from a low-cost sensor network in an occupational 

setting.

Despite these challenges, this study had many novel features and strengths. This is the first 

example of using a sensor network to estimate personal occupational exposure that we are 

aware of. The sensor network achieved a high degree of spatial resolution, reducing errors 

related to spatial interpolation. We were able to estimate exposures at a relatively high 

temporal resolution, also an advantage over shift-long TWAs. We maintained a high degree 

of accuracy for the location information on simulated mobile employees with respect to both 

time and space with position diaries. Consequently, the location information we used to 

estimate personal exposures did not have errors that would have been inherent to those 

provided by in an indoor positioning system. Our multi-hazard sensor network was deployed 

at the study site continuously for nearly eight months. While we only had access to the 

facility for five days over that period to conduct personal sampling, we demonstrated the 

ability of our technique to potentially provide personal exposure estimates for any employee 

whose position can be tracked over that time. This kind of information on individual workers 
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would be a vast improvement over traditional personal sampling rates4, 5 with beneficial 

implications for both occupational exposure assessment for occupational exposure limit 

(OEL) compliance and epidemiological study.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic of technique to estimate personal exposure from the sensor network. Exposure 

estimates are derived by taking the hazard intensity at location (x,y) for time ti, over the time 

period of interest.
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Figure 2. 
Examples of time series comparing network-derived exposure estimates (dashed line) with 

personal DRI measurements (solid line) for a simulated mobile employee for a) PM, b) CO, 

c) O3, and d) noise over the course of one work shift.
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Figure 3. 
Bland-Altman plots of the difference between network-derived exposure measurements and 

personal DRI measurements versus their mean for a) PM, b) CO, c) O3, and d) noise. The 

solid line indicates the mean difference and the dashed lines are the bounds of agreement. 

Circles are data from August 2017, squares are data from December 2017, and triangles are 

data from March 2018.
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